
AI Agent Benchmark: Performance vs. 
Cost Analysis 

1.​Overview 

This experiment benchmarks the performance and cost efficiency of five AI agents across 

document retrieval and response generation tasks. The agents evaluated are: 

●​ ReAct Agent 

●​ OpenAI Agent 

●​ LLM Compiler Agent 

●​ LLM Chain-of-Abstraction Agent 

●​ Language Agent Tree Search (LATS) Agent​

 

Each was tested against both simple and complex queries. Evaluation criteria included: 

●​ Execution Time 

●​ Memory Usage 

●​ Token Consumption 

●​ Estimated Cost (based on OpenAI API pricing) 

 

2.​Technology Stack 
●​ Programming Language: 

                Python 

●​ Libraries & Frameworks: 

○​ OpenAI API for language model execution 



○​ LlamaIndex for document retrieval and indexing 

○​ psutil for memory tracking 

○​ pdfplumber for PDF text extraction 

○​ Weights & Biases (wandb) for experiment tracking 

○​ ThreadPoolExecutor for parallel document loading 

○​ tiktoken for token counting 

○​ torch for GPU-based embeddings and acceleration 

 

3.​Code Implementation 

1. Environment Setup 

●​ OpenAI keys loaded from environment variables 

●​ Weights & Biases initialized for tracking 

●​ Token tracking via tiktoken 

2. Performance Tracking 

A PerformanceTracker class was created to measure: 

●​ Execution time 

●​ Memory usage 

●​ Tokens used 

●​ Estimated cost (based on OpenAI API pricing) 

3. Document Processing 

●​ Text documents and PDFs are loaded from a directory. 

●​ Text loading optimized using parallel threads 

●​ Extracted text is stored in a vector database (LlamaIndex). 



4. Agents and Query Execution 

Each agent was designed to process a query and retrieve relevant documents before 

generating a response: 

1.​ ReAct Agent: 

○​ Utilized OpenAI’s ReActAgent for stepwise reasoning. 

○​ Retrieved relevant documents and generated responses. 

2.​ OpenAI Agent: 

○​ Used OpenAI’s ChatOpenAI model to generate responses directly from retrieved 

documents. 

3.​ LLM Compiler Agent: 

○​ Used a PromptTemplate and LLMChain to structure responses. 

4.​ LLM Chain-of-Abstraction Agent: 

○​ Used a predefined SystemMessage to enforce structured abstraction in 

responses. 

5.​  LATS Agent: 

○​ Implemented Language Agent Tree Search for query decomposition and 
synthesis 

○​ Broke down complex queries into sub-questions before retrieval 
○​ Combined parallel retrievals with hierarchical response generation 

5. Execution Process 

●​ A query (“List all the documents available.”) was used for testing all agents. 

●​ Each agent was executed sequentially. 

●​ Performance metrics were logged to Weights & Biases. 

●​ GPU acceleration was used where available for embedding generation. 

6. Code Execution & Finalization 

●​ After executing all agents, wandb.finish() was called to finalize tracking. 



 

4. Document 
Tested on: Risk-Assessment-Report-Booklet.pdf from the BRS website 
Code Repository: github.com/think-ke/AI-Experiments 
 
 

5. Results Analysis for a simple query 

 Simple Query: “What does the document talk about?” 
 

Agent Time (s) Memory (MB) Tokens Cost ($) 

ReAct 3.42 0.01 71 0.00014 

OpenAI 3.35 0.00 188 0.00038 

Compiler 5.67 0.00 390 0.00078 

Abstraction 7.96 0.00 357 0.00071 

LATS 12.23 0.00 615 0.00123 
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ReAct Agent 

 

 

 

Metric Value 

Execution Time 3.420231 

Memory Usage 0.011719 

Token Count 71 

Cost 0.000142 

 

 

 

 



OpenAI Agent 

 

Metric Value 

Execution Time 3.353041 

Memory Usage 0 

Token Count 188 

Cost 0.000376 

 

 



LLM Compiler 

 

Metric Value 

Execution Time 5.667527 

Memory Usage 0 

Token Count 390 

Cost 0.00078 

 

 



 

LLM Chain-of-Abstraction agent 

 

 

Metric Value 

Execution Time 7.961807 

Memory Usage 0 

Token Count 357 

Cost 0.000714 



 

Language Agent Tree Search Agent: 

 

 

 

Metric Value 

Execution Time 12.22575 

Memory Usage 0 

Token Count 615 



Cost 0.00123 

 

 

6. Results Analysis for a complex query 

Complex Query: “Summarize the top 5 risks and mitigation strategies.” 
 

Agent Time (s) Memory (MB) Tokens Cost ($) 

ReAct 5.97 0.02 148 0.00030 

OpenAI 21.28 0.00 765 0.00153 

Compiler 12.52 0.00 616 0.00123 

Abstraction 12.99 0.00 524 0.00105 

LATS 18.83 0.00 1113 0.00223 

 
 

 

 

 

 

 

 

 

 

 



 

ReAct Agent 

 

 

 

Metric Value 

Execution Time 5.967277 

Memory Usage 0.023438 

Token Count 148 

Cost 0.000296 

 

 

 

 

 



 

OpenAI Agent 

 

 

 

 

Metric Value 

Execution Time 21.27965 

Memory Usage 0 

Token Count 765 

Cost 0.00153 

 

 

 



 

LLM Compiler Agent 

 

Metric Value 

Execution Time 12.51766 

Memory Usage 0 

Token Count 616 

Cost 0.001232 



 

 

 

LLM Chain-of-abstraction Agent 

 

 

 

Metric Value 

Execution Time 12.99656 

Memory Usage 0 

Token Count 524 

Cost 0.001048 

 

 



 

 

Language Agent Tree Search: 

 

 

 

Metric Value 

Execution Time 18.83493 

Memory Usage 0 

Token Count 1113 

Cost 0.002226 

 



 

 

7. Aggregated Results Analysis based on Performance Metrics 

7.1 Simple Query 
Execution Time 

 
 
Memory used 



 
 
Tokens Used 

 
 
 
Estimated Cost 



 
 
 

 

7.2 Complex Query 
Execution Time 

 
 
 
Memory Used 



 

 
 
 
 
 
Tokens Used 
 

 
Estimated Cost 



 
 
 

 

 

 

8. Key Conclusions from the Agent Performance Experiment 

8.1 Simple Queries 

●​  ReAct Agent leads with the best speed-to-cost ratio. 
●​ OpenAI Agent is fast but inefficient in token use (2.6x more expensive than ReAct). 
●​ Compiler and Abstraction agents offer structured responses but at higher cost. 
●​ LATS Agent is overkill—slowest and most expensive.​

 

Recommendation:​
  Use ReAct for simple queries​
  Avoid LATS unless necessary for depth 

 



8.2  Complex Queries 

●​  ReAct Agent again balances performance and cost effectively. 
●​ OpenAI Agent struggles: slowest and costliest relative to output quality. 
●​ Compiler Agent gives structured breakdowns; suitable for technical queries. 
●​ Abstraction Agent adds conceptual depth. 
●​ LATS offers exhaustive breakdowns but at high cost and time.​

 

Recommendations: 

●​  For cost-efficiency: ReAct 
●​  For structure: Compiler 
●​  For layered insight and strategic-panning: Abstraction 
●​  For deep synthesis: LATS (only if depth > budget) 
●​  Avoid OpenAI Agent for complex tasks​

 

 

9. Final Takeaways 

Use Case Recommended Agent 

Fast, cheap answers ReAct Agent 

Technical summaries Compiler Agent 

Multi-layer analysis Abstraction Agent 

Deep decomposition LATS Agent (high cost) 

Simple raw outputs OpenAI Agent (only for speed) 



 

10. Strategic Summary: 

Agent selection should be query-driven:  

●​ prioritize ReAct for versatility 
●​ Choose Compiler, Abstraction, or LATS for structured, deep, or complex reasoning. 

 

11. Glossary 

●​ Execution Time (s): Time taken to process and respond to a query 
●​ Memory Used (MB): RAM usage during execution 
●​ Tokens Used: Measure of text length that affects cost 
●​ Estimated Cost ($): Based on OpenAI token pricing 
●​ Output Structure: Degree of logical formatting in the agent’s response 
●​ LATS : Language Agent Search Tree 
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