Al Agent Benchmark: Performance vs.
Cost Analysis
1. Overview

This experiment benchmarks the performance and cost efficiency of five Al agents across

document retrieval and response generation tasks. The agents evaluated are:

ReAct Agent

e OpenAl Agent

e LLM Compiler Agent

e LLM Chain-of-Abstraction Agent

e Language Agent Tree Search (LATS) Agent

Each was tested against both simple and complex queries. Evaluation criteria included:

e Execution Time
e Memory Usage
e Token Consumption

e Estimated Cost (based on OpenAl API pricing)

2. Technology Stack

e Programming Language:
Python

e Libraries & Frameworks:

o OpenAl API for language model execution

o Llamalndex for document retrieval and indexing

o psutil for memory tracking

o pdfplumber for PDF text extraction

o Weights & Biases (wandb) for experiment tracking
o ThreadPoolExecutor for parallel document loading
o tiktoken for token counting

o torch for GPU-based embeddings and acceleration

3. Code Implementation

1. Environment Setup

e OpenAl keys loaded from environment variables
e Weights & Biases initialized for tracking

e Token tracking via tiktoken
2. Performance Tracking
A PerformanceTracker class was created to measure:

e Execution time
e Memory usage
e Tokens used

e Estimated cost (based on OpenAl API pricing)
3. Document Processing

e Text documents and PDFs are loaded from a directory.
e Textloading optimized using parallel threads

e Extracted text is stored in a vector database (Llamalndex).

4. Agents and Query Execution

Each agent was designed to process a query and retrieve relevant documents before

generating a response:

1. ReAct Agent:
o Utilized OpenAl’s ReActAgent for stepwise reasoning.
o Retrieved relevant documents and generated responses.
2. OpenAl Agent:
o Used OpenAl’s ChatOpenAl model to generate responses directly from retrieved
documents.
3. LLM Compiler Agent:
o Used aPromptTemplate and LLMChain to structure responses.
4. LLM Chain-of-Abstraction Agent:
o Used a predefined SystemMessage to enforce structured abstraction in
responses.
5. LATS Agent:

o Implemented Language Agent Tree Search for query decomposition and
synthesis

o Broke down complex queries into sub-questions before retrieval

o Combined parallel retrievals with hierarchical response generation

5. Execution Process

e Aquery (“List all the documents available.”) was used for testing all agents.
e FEach agent was executed sequentially.
e Performance metrics were logged to Weights & Biases.

e GPU acceleration was used where available for embedding generation.
6. Code Execution & Finalization

e After executing all agents, wandb.finish() was called to finalize tracking.

4. Document

Tested on: Risk-Assessment-Report-Booklet.pdf from the BRS website
Code Repository: github.com/think-ke/Al-Experiments

5. Results Analysis for a simple query

Simple Query: “What does the document talk about?”

Agent Time (s) | Memory (MB) Tokens | Cost ($)
ReAct 3.42 0.01 71 0.00014
OpenAl 3.35 0.00 188 0.00038
Compiler 5.67 0.00 390 0.00078
Abstraction | 7.96 0.00 357 0.00071
LATS 12.23 0.00 615 0.00123

https://github.com/think-ke/AI-Experiments
http://github.com/think-ke/AI-Experiments

ReAct Agent

Cost—

Execution Time —

:

Memory Usage -

ReAct Performance Breakdown

Token Count -
o 1II} EICI SID 4:.'] EICI Eill}
Value

Metric Value

Execution Time 3.420231

Memory Usage 0.011719

Token Count 71

Cost 0.000142

jumping-deluge-43

OpenAl Agent

OpenAl Performance Breakdown

jumping-deluge-43
Cost—

Execution Time
g
Memaory Usage -

Token Count -

1 1 1 1
] 20 40 a0 a0 100 120 140 1680 180 200
Value

Metric Value
Execution Time 3.353041
Memory Usage 0

Token Count 188

Cost 0.000376

LLM Compiler

Compiler Performance Breakdown

jumping-deluge-43
Cost—

Execution Time

:

Memaory Usage -
Token Count -
o 5II} 1-5"3' 1:I':-I} 2IZIH:I EQD 3LI‘.-:I SIEU 11-I.‘.-.'ZII
Value

Metric Value
Execution Time 5.667527
Memory Usage 0
Token Count 390
Cost 0.00078

LLM Chain-of-Abstraction agent

Abstraction Performance Breakdown

jumping-deluge-43
Cost

Execution Time

:

Memory Usage -

Token Count-
o 5|I} 1(IIID 1!|':-I} EIZIH.ZI EéD BIE-CI E-IEU 4L‘.l.'2lI
Value
Metric Value
Execution Time 7.961807
Memory Usage 0
Token Count 357
Cost 0.000714

Language Agent Tree Search Agent:

Cost—

Execution Time —

:

Memory Usage -

LATS Performance Breakdown

Token Count -
o EICI 1IIIICI 15& 2'.'IZID ZEICI 3I.I‘.'I} EléllI 4II]CI 4tl':-El ECIZII} ﬁél:l Eil.l‘.{l t".i:':-.']I
Value
Metric Value
Execution Time 12.22575
Memory Usage 0
Token Count 615

jumping-deluge-43

Cost 0.00123

6. Results Analysis for a complex query

Complex Query: “Summarize the top 5 risks and mitigation strategies.”

Agent Time (s) | Memory (MB) Tokens | Cost ($)
ReAct 5.97 0.02 148 0.00030
OpenAl 21.28 0.00 765 0.00153
Compiler 12.52 0.00 616 0.00123
Abstraction | 12.99 0.00 524 0.00105
LATS 18.83 0.00 1113 0.00223

ReAct Agent

ReAct Performance Breakdown

Cost
Execution Time
:
Memory Usage
Token Count
IIII 4:] :EII] 1IZIIO
Value
Metric Value
Execution Time 5.967277
Memory Usage 0.023438
Token Count 148
Cost 0.000296

T
120

140

160

B comic-firefly-45

OpenAl Agent

OpenAl Performance Breakdown

B comic-firefly-45
Cost

Execution Time
:

Memory Usage

Token Count

0 100 200 300 400 500 €00 700 800
Value

Metric Value
Execution Time 21.27965
Memory Usage 0
Token Count 765
Cost 0.00153

LLM Compiler Agent

Compiler Performance Breakdown

comic-firefly-45
Cost—

Execution Time —
g
Memory Usage -

Token Count -

T T T T T T T T T T T T 1
o 50 100 150 200 250 300 350 400 450 GSH00 6550 GO0 650
Value

Metric Value
Execution Time 12.51766
Memory Usage 0

Token Count 616

Cost 0.001232

LLM Chain-of-abstraction Agent

Abstraction Performance Breakdown

comic-firefly-45
Cost—

Execution Time
g
Memaory Usage -

Token Count |

T T T T T T T T T T 1
o B0 100 150 200 280 300 350 400 450 800 550
Value

Metric Value
Execution Time 12.99656
Memory Usage 0

Token Count 524

Cost 0.001048

Language Agent Tree Search:

LATS Performance Breakdown

B comic-firefly-45
Cost

Execution Time
:

Memory Usage

Token Count

o 20 40 0 80 1000 1200
Value

Metric Value
Execution Time 18.83493
Memory Usage 0
Token Count 1113
Cost 0.002226

7. Aggregated Results Analysis based on Performance Metrics

7.1 Simple Query

Execution Time
All Agents - Execution Time (s)

Abstraction

[jumping-deluge-43
Compiler
£
2 LATS
=,
COpenal
Redct

| | | | I | | | | | I | | |
o 1 2 3 4 5 L] T g el 10 1 12 132
Execution Time (s}

Memory used

All Agents - Memory Used (MB)

Absiraction W jumping-deluge-43
Compiler -
£
s LATS -
]
Cpeanal -
Refct
I T T T T T T T T T T T 1
0.000 0.002 0.004 0.006 0.0028 0.010 0.2
Memory Uzed (MB)
Tokens Used
All Agents - Tokens Used
1 jumping-deluge-43

Agent

T T T T T T T T T T T 1
o 50 100 150 200 250 300 350 400 450 H00 S50 G00 GO
Tokens Used

Estimated Cost

All Agents - Estimated Cost ($)

Abstraction

B jumping-deluge-43
Compiler
=
a LATS
=L
CpenAl
ReAct
I T T T T T T T T T T T T 1
00000 00002 00004 00006 0.0008 0.0010 0.od2
Estimated Cost ($)
7.2 Complex Query

Execution Time

All Agents - Execution Time (s)

I comic-firefiy-45

Agent

T T T
o 2 4 G] 10 12 14 18 18

Execution Time (s}

Memory Used

All Agents - Memory Used (MB)

. cfinn [comic-firefly-45
Compiler -
£
g LATS -
<
Opendl -
ReAct
I I I I I I I I I I I I I I
000002 004 008 008 010 012 014 016 018 020 022 024028
Memory Used (MB)
Tokens Used
All Agents - Tokens Used
Abstraction

B comic-firefiy-45

Agent

Tokens Used
Estimated Cost

All Agents - Estimated Cost ($)

Abstraction

B comic-firefly-45
Compiler
5
) LATS
=T,
CpenAl
Redct
f T T T T T T 1
0.0000 0.0005 0.o010 0.0015 0.0020 0.0025 0.0030 0.0035

Estimated Cost(§)

8. Key Conclusions from the Agent Performance Experiment
8.1 Simple Queries

ReAct Agent leads with the best speed-to-cost ratio.

OpenAl Agent is fast but inefficient in token use (2.6x more expensive than ReAct).
Compiler and Abstraction agents offer structured responses but at higher cost.
LATS Agent is overkill—slowest and most expensive.

[]
[]
[]
[]
Recommendation:

Use ReAct for simple queries
Avoid LATS unless necessary for depth

8.2 Complex Queries

ReAct Agent again balances performance and cost effectively.

OpenAl Agent struggles: slowest and costliest relative to output quality.
Compiler Agent gives structured breakdowns; suitable for technical queries.
Abstraction Agent adds conceptual depth.

LATS offers exhaustive breakdowns but at high cost and time.

Recommendations:

For cost-efficiency: ReAct

For structure: Compiler

For layered insight and strategic-panning: Abstraction
For deep synthesis: LATS (only if depth > budget)
Avoid OpenAl Agent for complex tasks

9. Final Takeaways

Use Case Recommended Agent

Fast, cheap answers ReAct Agent

Technical summaries Compiler Agent

Multi-layer analysis Abstraction Agent

Deep decomposition LATS Agent (high cost)

Simple raw outputs OpenAl Agent (only for speed)

10. Strategic Summary:

Agent selection should be query-driven:

e prioritize ReAct for versatility
e Choose Compiler, Abstraction, or LATS for structured, deep, or complex reasoning.

11. Glossary

Execution Time (s): Time taken to process and respond to a query
Memory Used (MB): RAM usage during execution

Tokens Used: Measure of text length that affects cost

Estimated Cost ($): Based on OpenAl token pricing

Output Structure: Degree of logical formatting in the agent’s response

LATS : Language Agent Search Tree

	AI Agent Benchmark: Performance vs. Cost Analysis
	1.​Overview
	2.​Technology Stack
	3.​Code Implementation
	1. Environment Setup
	2. Performance Tracking
	3. Document Processing
	4. Agents and Query Execution
	5. Execution Process
	6. Code Execution & Finalization

	4. Document
	5. Results Analysis for a simple query
	

	6. Results Analysis for a complex query
	Complex Query: “Summarize the top 5 risks and mitigation strategies.”

	
	7. Aggregated Results Analysis based on Performance Metrics
	7.1 Simple Query
	
	7.2 Complex Query

	
	
	
	8. Key Conclusions from the Agent Performance Experiment
	8.1 Simple Queries
	8.2 Complex Queries

	9. Final Takeaways
	
	10. Strategic Summary:
	11. Glossary

