
AI Agent Benchmark: Performance vs.
Cost Analysis

1.​Overview

This experiment benchmarks the performance and cost efficiency of five AI agents across

document retrieval and response generation tasks. The agents evaluated are:

●​ ReAct Agent

●​ OpenAI Agent

●​ LLM Compiler Agent

●​ LLM Chain-of-Abstraction Agent

●​ Language Agent Tree Search (LATS) Agent​

Each was tested against both simple and complex queries. Evaluation criteria included:

●​ Execution Time

●​ Memory Usage

●​ Token Consumption

●​ Estimated Cost (based on OpenAI API pricing)

2.​Technology Stack
●​ Programming Language:

 Python

●​ Libraries & Frameworks:

○​ OpenAI API for language model execution

○​ LlamaIndex for document retrieval and indexing

○​ psutil for memory tracking

○​ pdfplumber for PDF text extraction

○​ Weights & Biases (wandb) for experiment tracking

○​ ThreadPoolExecutor for parallel document loading

○​ tiktoken for token counting

○​ torch for GPU-based embeddings and acceleration

3.​Code Implementation

1. Environment Setup

●​ OpenAI keys loaded from environment variables

●​ Weights & Biases initialized for tracking

●​ Token tracking via tiktoken

2. Performance Tracking

A PerformanceTracker class was created to measure:

●​ Execution time

●​ Memory usage

●​ Tokens used

●​ Estimated cost (based on OpenAI API pricing)

3. Document Processing

●​ Text documents and PDFs are loaded from a directory.

●​ Text loading optimized using parallel threads

●​ Extracted text is stored in a vector database (LlamaIndex).

4. Agents and Query Execution

Each agent was designed to process a query and retrieve relevant documents before

generating a response:

1.​ ReAct Agent:

○​ Utilized OpenAI’s ReActAgent for stepwise reasoning.

○​ Retrieved relevant documents and generated responses.

2.​ OpenAI Agent:

○​ Used OpenAI’s ChatOpenAI model to generate responses directly from retrieved

documents.

3.​ LLM Compiler Agent:

○​ Used a PromptTemplate and LLMChain to structure responses.

4.​ LLM Chain-of-Abstraction Agent:

○​ Used a predefined SystemMessage to enforce structured abstraction in

responses.

5.​ LATS Agent:

○​ Implemented Language Agent Tree Search for query decomposition and
synthesis

○​ Broke down complex queries into sub-questions before retrieval
○​ Combined parallel retrievals with hierarchical response generation

5. Execution Process

●​ A query (“List all the documents available.”) was used for testing all agents.

●​ Each agent was executed sequentially.

●​ Performance metrics were logged to Weights & Biases.

●​ GPU acceleration was used where available for embedding generation.

6. Code Execution & Finalization

●​ After executing all agents, wandb.finish() was called to finalize tracking.

4. Document
Tested on: Risk-Assessment-Report-Booklet.pdf from the BRS website
Code Repository: github.com/think-ke/AI-Experiments

5. Results Analysis for a simple query

 Simple Query: “What does the document talk about?”

Agent Time (s) Memory (MB) Tokens Cost ($)

ReAct 3.42 0.01 71 0.00014

OpenAI 3.35 0.00 188 0.00038

Compiler 5.67 0.00 390 0.00078

Abstraction 7.96 0.00 357 0.00071

LATS 12.23 0.00 615 0.00123

https://github.com/think-ke/AI-Experiments
http://github.com/think-ke/AI-Experiments

ReAct Agent

Metric Value

Execution Time 3.420231

Memory Usage 0.011719

Token Count 71

Cost 0.000142

OpenAI Agent

Metric Value

Execution Time 3.353041

Memory Usage 0

Token Count 188

Cost 0.000376

LLM Compiler

Metric Value

Execution Time 5.667527

Memory Usage 0

Token Count 390

Cost 0.00078

LLM Chain-of-Abstraction agent

Metric Value

Execution Time 7.961807

Memory Usage 0

Token Count 357

Cost 0.000714

Language Agent Tree Search Agent:

Metric Value

Execution Time 12.22575

Memory Usage 0

Token Count 615

Cost 0.00123

6. Results Analysis for a complex query

Complex Query: “Summarize the top 5 risks and mitigation strategies.”

Agent Time (s) Memory (MB) Tokens Cost ($)

ReAct 5.97 0.02 148 0.00030

OpenAI 21.28 0.00 765 0.00153

Compiler 12.52 0.00 616 0.00123

Abstraction 12.99 0.00 524 0.00105

LATS 18.83 0.00 1113 0.00223

ReAct Agent

Metric Value

Execution Time 5.967277

Memory Usage 0.023438

Token Count 148

Cost 0.000296

OpenAI Agent

Metric Value

Execution Time 21.27965

Memory Usage 0

Token Count 765

Cost 0.00153

LLM Compiler Agent

Metric Value

Execution Time 12.51766

Memory Usage 0

Token Count 616

Cost 0.001232

LLM Chain-of-abstraction Agent

Metric Value

Execution Time 12.99656

Memory Usage 0

Token Count 524

Cost 0.001048

Language Agent Tree Search:

Metric Value

Execution Time 18.83493

Memory Usage 0

Token Count 1113

Cost 0.002226

7. Aggregated Results Analysis based on Performance Metrics

7.1 Simple Query
Execution Time

Memory used

Tokens Used

Estimated Cost

7.2 Complex Query
Execution Time

Memory Used

Tokens Used

Estimated Cost

8. Key Conclusions from the Agent Performance Experiment

8.1 Simple Queries

●​ ReAct Agent leads with the best speed-to-cost ratio.
●​ OpenAI Agent is fast but inefficient in token use (2.6x more expensive than ReAct).
●​ Compiler and Abstraction agents offer structured responses but at higher cost.
●​ LATS Agent is overkill—slowest and most expensive.​

Recommendation:​
 Use ReAct for simple queries​
 Avoid LATS unless necessary for depth

8.2 Complex Queries

●​ ReAct Agent again balances performance and cost effectively.
●​ OpenAI Agent struggles: slowest and costliest relative to output quality.
●​ Compiler Agent gives structured breakdowns; suitable for technical queries.
●​ Abstraction Agent adds conceptual depth.
●​ LATS offers exhaustive breakdowns but at high cost and time.​

Recommendations:

●​ For cost-efficiency: ReAct
●​ For structure: Compiler
●​ For layered insight and strategic-panning: Abstraction
●​ For deep synthesis: LATS (only if depth > budget)
●​ Avoid OpenAI Agent for complex tasks​

9. Final Takeaways

Use Case Recommended Agent

Fast, cheap answers ReAct Agent

Technical summaries Compiler Agent

Multi-layer analysis Abstraction Agent

Deep decomposition LATS Agent (high cost)

Simple raw outputs OpenAI Agent (only for speed)

10. Strategic Summary:

Agent selection should be query-driven:

●​ prioritize ReAct for versatility
●​ Choose Compiler, Abstraction, or LATS for structured, deep, or complex reasoning.

11. Glossary

●​ Execution Time (s): Time taken to process and respond to a query
●​ Memory Used (MB): RAM usage during execution
●​ Tokens Used: Measure of text length that affects cost
●​ Estimated Cost ($): Based on OpenAI token pricing
●​ Output Structure: Degree of logical formatting in the agent’s response
●​ LATS : Language Agent Search Tree

	AI Agent Benchmark: Performance vs. Cost Analysis
	1.​Overview
	2.​Technology Stack
	3.​Code Implementation
	1. Environment Setup
	2. Performance Tracking
	3. Document Processing
	4. Agents and Query Execution
	5. Execution Process
	6. Code Execution & Finalization

	4. Document
	5. Results Analysis for a simple query
	

	6. Results Analysis for a complex query
	Complex Query: “Summarize the top 5 risks and mitigation strategies.”

	
	7. Aggregated Results Analysis based on Performance Metrics
	7.1 Simple Query
	
	7.2 Complex Query

	
	
	
	8. Key Conclusions from the Agent Performance Experiment
	8.1 Simple Queries
	8.2 Complex Queries

	9. Final Takeaways
	
	10. Strategic Summary:
	11. Glossary

